Skip to content

Autotrain

Autotrain, developed by Hugging Face, is a platform designed to simplify training cutting-edge models in various fields: NLP, LLM, CV, etc. Read more.

Create Python Virtual Environment for Autotrain

Let's first create a virtual environment for Autotrain, built on top of the minimal system Python installation located at /usr/bin/python:

mkdir -p venv_autotrain
python -m venv venv_autotrain --system-site-packages
source venv_autotrain/bin/activate
pip3 install autotrain-advanced

Note: If Autotrain doesn't work properly, you may have to reinstall nvidia-ml-py.

pip3 uninstall nvidia-ml-py3 pynvml
pip3 install --force-reinstall nvidia-ml-py==11.450.51

Train Dataset Format

The dataset should have a column "text" containing the data to be trained on. Example

Config File for Fine-Tuning Local LLM

Here is an example to create a config file for supervised fine-tuning purposes:

task: llm-sft
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
project_name: Llama-3-1-FT
log: wandb
backend: local
data:
  path: Path/to/the/training/dataset/folder
  train_split: train
  valid_split: null
  chat_template: null
  column_mapping:
    text_column: text
params:
  block_size: 1024
  model_max_length: 8192
  epochs: 800
  batch_size: 2
  lr: 1e-5
  peft: true
  quantization: null
  target_modules: all-linear
  padding: right
  optimizer: paged_adamw_8bit
  scheduler: cosine
  gradient_accumulation: 8
  mixed_precision: bf16
hub:
  username: ***
  token: hf_***
  push_to_hub: true

More details

Run Autotrain to Fine-Tune Using the Config File

cd Path/to/save/the/adapter
autotrain --config path/to/config.yaml

Merge Adapters with Base Model to Create New Model

Adapters need to be merged with the base model in order to run. You can use the code below:

from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import torch
from peft import PeftModel
import os

adapter = "path/to/saved/adapters/"
model_name = "project-name-from-config-file"
adapter_path = os.path.join(adapter, model_name)
base_model_path = "meta-llama/Meta-Llama-3.1-8B-Instruct"
target_model_path = "path/to/save/fine-tuned/models" + model_name

config = AutoConfig.from_pretrained(base_model_path)
base_model = AutoModelForCausalLM.from_pretrained(base_model_path)

merged_model = PeftModel.from_pretrained(base_model, adapter_path)

tokenizer = AutoTokenizer.from_pretrained(adapter_path, trust_remote_code=True)
merged_model = merged_model.merge_and_unload()

print("Saving target model...")
merged_model.save_pretrained(target_model_path)
tokenizer.save_pretrained(target_model_path)
config.save_pretrained(target_model_path)