Skip to content

Example Multi-Node Programs

In this section we will learn how to extend the UNet2d and Gpt1.5B applications scripts that we introduced in the Example Programs to compile and run multiple instances of the model in a data parallel fashion across multiple tiles or across multiple nodes.

UNet2d

Set Up

Create the following directory and change to it if you have not already done so.

mkdir -p ~/apps/image/unet
cd ~/apps/image/unet

Create Unet2d.sh and unet_batch.sh

Create the file Unet2d.sh and unet_batch.sh in the current directory using your favorite editor. Copy and paste the contents of Unet2d.sh and unet_batch.sh to files with the same name into the current directory using your favorite editor.

chmod +x Unet2d.sh
chmod +x unet_batch.sh

Compile and run

Run these commands for training (compile + train): The compile and run scripts have the following input arguments.

  1. image size: The images are square. Valid sizes include 256, 512, and 1024.

  2. Batch size: local batch size. The global batch size is local batch size * Num of instances.

  3. num of instances: Total number of instances of Unet2d run in data parallel framework.

  4. RunID: A unique Id for the compile or run process.

The script uses the arguments pcompile and prun for the data parallel compile and run.

./Unet2d.sh pcompile <image size> <batch_size> <num of instances> <RunID>
./Unet2d.sh prun <image size> <batch_size> <num of instances> <RunID>

For a image size of 256x256 and local batch size of 256 when running 8 instance, the commands are provided as follows.

./Unet2d.sh pcompile 256 256 8 unet2d_8inst_pcompile
./Unet2d.sh prun 256 256 8 unet2d_8inst_prun

The above commands displays the file that contains the output for the execution of the above scripts, usually /data/ANL/results/<hostname>/<userId>/<RunID>/Unet2d.out

You can inspect the compile command that contains --data-parallel -ws 2 arguments to ensure that the pef file is compatible for data parallel runs. The pef generated from the compilation process for the above compile command is placed under out/Unet2d/unet_train_256_256_NP_4 inside the current working directory.

python /opt/sambaflow/apps/image/segmentation/compile.py compile --mac-v2 --in-channels=3 --in-width=${2} --in-height=${2} --batch-size=${BS} --enable-conv-tiling --num-tiles=4 --pef-name=unet_train_${BS}_${2}_NP_${NUM_TILES}  --data-parallel -ws 2 --output-folder=${OUTDIR}

Once the model is compiled, sbatch is used to launch the multiple instances. The below example shows that a total of 8 tasks or instances are launched over the host on which the script is launched.

sbatch --gres=rdu:1 --tasks-per-node ${NP} --nodes 1 --nodelist $(hostname) --cpus-per-task=${cpus} $(pwd)/unet_batch.sh ${NP} ${NUM_WORKERS} ${BS} ${2} ${5}

The run command has --data-parallel --reduce-on-rdu arguments that is compatible with data parallel run.

srun --mpi=pmi2 python /opt/sambaflow/apps/image/segmentation//hook.py run --data-cache=${CACHE_DIR}  --data-in-memory --num-workers=${NUM_WORKERS} --enable-tiling  --min-throughput 395 --in-channels=3 --in-width=${IM} --in-height=${IM} --init-features 32 --batch-size=${BS} --epochs 10 --data-dir ${DS} --log-dir log_dir_unet_${IM}_${BS}_${NP} --data-parallel --reduce-on-rdu --pef=${OUTDIR}/unet_train_${BS}_${IM}_NP_4/unet_train_${BS}_${IM}_NP_4.pef

The throughput is calculated by averaging the e2e samples_per_sec over the different instances.

inner train loop time : 36.314290046691895 for 10 epochs, number of global steps: 10, e2e samples_per_sec: 563.9653143065
inner train loop time : 33.36756229400635 for 10 epochs, number of global steps: 10, e2e samples_per_sec: 613.7697389922524
inner train loop time : 33.94625234603882 for 10 epochs, number of global steps: 10, e2e samples_per_sec: 603.3066563941279
inner train loop time : 32.309499979019165 for 10 epochs, number of global steps: 10, e2e samples_per_sec: 633.8692958200872
inner train loop time : 31.418426036834717 for 10 epochs, number of global steps: 10, e2e samples_per_sec: 651.8467849404489
inner train loop time : 28.164129495620728 for 10 epochs, number of global steps: 10, e2e samples_per_sec: 727.1660927132315
inner train loop time : 30.29698896408081 for 10 epochs, number of global steps: 10, e2e samples_per_sec: 675.9747651583616
inner train loop time : 25.332663536071777 for 10 epochs, number of global steps: 10, e2e samples_per_sec: 808.442427336472

Gpt 1.5B

Set up

mkdir ~/nlp-multiNodetest
cd ~/nlp-multiNodetest

Create and run Gpt1.5B_compile.sh and Gpt1.5B_run.sh

Create the files Gpt1.5B_compile.sh and Gpt1.5B_run.sh in the current directory. Copy the contents of Gpt1.5B_compile.sh and Gpt1.5B_run.sh. Alternatively, the files can be accessed at /data/ANL/scripts/Gpt1.5B_compile.sh and /data/ANL/scripts/Gpt1.5B_run.sh on any of the compute node and can be copied over to the working directory.

Compile and Run

This script consists of commands to compile and run multiple instances of Gpt1.5B model across multiple nodes. Run the Gpt1.5B_compile.sh to first compile and generate the pef file for the model and it in turn launches the Gpt1.5B_run.sh script to run multiple instances of the model over the different nodes.

chmod +x Gpt1.5B_compile.sh
chmod +x Gpt1.5B_run.sh
./Gpt1.5B_compile.sh

You can see the log file path displayed on the screen as seen in the example below. You can use the tail command to check the progress of the run.

vsastry@sn30-r1-h1:~/nlp-multiNodetest$ ./Gpt1.5B_compile.sh
Using /data/ANL/results/sn30-r1-h1/vsastry/041823.19/GPT1.5B.out for output

The artifacts of the compile process is produced in the path : /data/scratch/<userId>.

Inspect the compile command in the script to see that it includes additional arguments --data-parallel and -ws 2 to generate a pef that is compatible for data parallel runs.

python /opt/sambaflow/apps/nlp/transformers_on_rdu/transformers_hook.py compile --module_name gpt2_pretrain --task_name clm --max_seq_length 1024 -b 16 --output_dir=${OUTDIR}/hf_output --overwrite_output_dir --do_train  --per_device_train_batch_size 16 --cache ${OUTDIR}/cache/ --tokenizer_name gpt2 --model_name gpt2 --mac-v2 --non_split_head --mac-human-decision /opt/sambaflow/apps/nlp/transformers_on_rdu/human_decisions_gm/mac_v2_overrides/gpt2_48_enc_full_recompute_training_spatialmapping_tiling16_clmerge_gm_nonpardp_lnsd.json --compiler-configs-file /opt/sambaflow/apps/nlp/transformers_on_rdu/human_decisions_gm/compiler_configs/compiler_configs_gpt2_sc_recompute_spatialmapping_tiling16_clsmerge_withcls_nonpardp_norc_e2e.json --skip_broadcast_patch --config_name /opt/sambaflow/apps/nlp/transformers_on_rdu/customer_specific/mv/configs/gpt2_config_xl_50260.json --no_index_select_patch --data-parallel -ws 2 --weight_decay 0.1  --max_grad_norm_clip 1.0 --num-tiles 4 --pef-name=gpt15 --output-folder=${OUTDIR}

Once the model is compiled, sbatch is used to launch the multiple instances across the nodes. The below example shows that a total of 32 tasks or instances are launched over 2 nodes with each node having a maximum of 16 tasks. Slurm allocates any 2 of the available nodes in this example.

/usr/local/bin/sbatch --output=${HOME}/slurm-%A.out --ntasks 32 --gres=rdu:1 --ntasks-per-node 16  --nodes 2 --cpus-per-task=8  Gpt1.5B_run.sh ${1} >> ${OUTPUT_PATH} 2>&1

The run command for each of this instance is present in the Gpt1.5B_run.sh script. You can inspect the command in the script to see that --data-parallel --reduce-on-rdu arguments are present to ensure that the model is run in a data parallel fashion and that the gradient accumulation takes place on the RDU.

/usr/local/bin/srun --mpi=pmi2 python /opt/sambaflow/apps/nlp/transformers_on_rdu/transformers_hook.py run  -b 16  --module_name gpt2_pretrain --task_name clm --max_seq_length 1024  --overwrite_output_dir --do_train  --per_device_train_batch_size 16 --cache ${OUTDIR}/cache/  --tokenizer_name gpt2 --model_name gpt2 --non_split_head --skip_broadcast_patch --no_index_select_patch --output_dir=${OUTDIR}/hf_output --config_name /opt/sambaflow/apps/nlp/transformers_on_rdu/customer_specific/mv/configs/gpt2_config_xl_50260.json --max_grad_norm_clip 1.0 --skip_checkpoint --data-parallel --reduce-on-rdu --data_dir /data/ANL/ss1024 --data_dir /data/ANL/ss1024  --logging_steps 1 --max_steps 900000 --learning_rate 0.00025 --steps_this_run 800 --min_throughput 299000 --max_throughput 600000 --pef=${OUTDIR}/gpt15/gpt15.pef >> ${OUTPUT_PATH} 2>&1

squeue shows that the model is run on 2 nodes sn30-r1-h1 and sn30-r2-h2.

JOBID PARTITION                      NAME     USER ST       TIME  NODES NODELIST(REASON)
10191 sambanova            Gpt1.5B_run.sh  vsastry  R      23:18      2 sn30-r1-h1,sn30-r2-h2

sntilestat can also be used to check the total numbers of tiles used for the runs.

TILE                 %idle %exec %pload %aload %chkpt %quiesce    PID     USER COMMAND
/XRDU_0/RDU_0/TILE_0   8.0  91.6    0.3    0.1    0.0      0.0 2750333  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_0/TILE_1   8.0  91.6    0.3    0.1    0.0      0.0 2750333  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_0/TILE_2   7.9  91.6    0.3    0.3    0.0      0.0 2750333  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_0/TILE_3   7.7  91.8    0.3    0.3    0.0      0.0 2750333  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_0/TILE_4   7.6  91.9    0.4    0.1    0.0      0.0 2750339  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_0/TILE_5   7.5  91.9    0.5    0.1    0.0      0.0 2750339  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_0/TILE_6   7.5  91.8    0.5    0.3    0.0      0.0 2750339  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_0/TILE_7   7.3  92.0    0.6    0.0    0.0      0.0 2750339  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_1/TILE_0   8.9  89.9    1.0    0.1    0.0      0.0 2750338  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_1/TILE_1   9.0  89.9    0.9    0.1    0.0      0.0 2750338  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_1/TILE_2   8.6  89.8    1.4    0.1    0.0      0.0 2750338  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_1/TILE_3   8.5  89.9    1.4    0.1    0.0      0.0 2750338  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_1/TILE_4   7.9  90.9    0.9    0.4    0.0      0.0 2750343  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_1/TILE_5   7.7  90.9    0.9    0.5    0.0      0.0 2750343  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_1/TILE_6   7.7  91.0    0.9    0.4    0.0      0.0 2750343  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_0/RDU_1/TILE_7   8.0  91.0    0.6    0.4    0.0      0.0 2750343  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_0/TILE_0   7.6  92.0    0.3    0.1    0.0      0.0 2750345  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_0/TILE_1   7.6  92.0    0.3    0.1    0.0      0.0 2750345  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_0/TILE_2   7.5  92.1    0.3    0.1    0.0      0.0 2750345  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_0/TILE_3   7.5  92.1    0.3    0.1    0.0      0.0 2750345  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_0/TILE_4   7.5  92.1    0.3    0.1    0.0      0.0 2750335  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_0/TILE_5   7.5  92.1    0.3    0.1    0.0      0.0 2750335  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_0/TILE_6   7.5  92.1    0.3    0.1    0.0      0.0 2750335  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_0/TILE_7   7.5  92.1    0.3    0.1    0.0      0.0 2750335  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_1/TILE_0   7.7  91.5    0.4    0.4    0.0      0.0 2750330  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_1/TILE_1   7.9  91.5    0.3    0.4    0.0      0.0 2750330  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_1/TILE_2   7.9  91.5    0.3    0.4    0.0      0.0 2750330  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_1/TILE_3   7.6  91.8    0.4    0.3    0.0      0.0 2750330  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_1/TILE_4   7.7  91.9    0.4    0.0    0.0      0.0 2750334  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_1/TILE_5   7.7  91.9    0.4    0.0    0.0      0.0 2750334  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_1/TILE_6   7.9  91.9    0.3    0.0    0.0      0.0 2750334  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_1/RDU_1/TILE_7   7.9  91.9    0.3    0.0    0.0      0.0 2750334  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_0/TILE_0   8.0  91.8    0.1    0.1    0.0      0.0 2750346  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_0/TILE_1   8.0  91.8    0.1    0.1    0.0      0.0 2750346  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_0/TILE_2   8.0  91.8    0.1    0.1    0.0      0.0 2750346  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_0/TILE_3   7.7  91.9    0.1    0.3    0.0      0.0 2750346  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_0/TILE_4   7.5  92.0    0.5    0.0    0.0      0.0 2750336  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_0/TILE_5   7.6  91.9    0.5    0.0    0.0      0.0 2750336  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_0/TILE_6   7.6  91.9    0.4    0.1    0.0      0.0 2750336  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_0/TILE_7   7.5  91.9    0.4    0.3    0.0      0.0 2750336  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_1/TILE_0   7.5  91.8    0.6    0.1    0.0      0.0 2750331  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_1/TILE_1   7.5  91.8    0.6    0.1    0.0      0.0 2750331  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_1/TILE_2   7.7  91.6    0.5    0.1    0.0      0.0 2750331  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_1/TILE_3   7.7  91.6    0.5    0.1    0.0      0.0 2750331  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_1/TILE_4   7.9  91.4    0.8    0.0    0.0      0.0 2750329  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_1/TILE_5   7.9  91.4    0.8    0.0    0.0      0.0 2750329  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_1/TILE_6   8.1  91.4    0.5    0.0    0.0      0.0 2750329  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_2/RDU_1/TILE_7   8.2  91.4    0.4    0.0    0.0      0.0 2750329  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_0/TILE_0   7.5  91.8    0.4    0.4    0.0      0.0 2750344  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_0/TILE_1   7.5  91.8    0.4    0.4    0.0      0.0 2750344  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_0/TILE_2   7.5  91.8    0.4    0.4    0.0      0.0 2750344  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_0/TILE_3   7.5  91.8    0.4    0.4    0.0      0.0 2750344  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_0/TILE_4   7.6  91.8    0.3    0.4    0.0      0.0 2750337  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_0/TILE_5   7.7  91.8    0.1    0.4    0.0      0.0 2750337  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_0/TILE_6   7.7  91.8    0.3    0.3    0.0      0.0 2750337  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_0/TILE_7   7.7  91.9    0.3    0.1    0.0      0.0 2750337  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_1/TILE_0   7.7  92.0    0.1    0.1    0.0      0.0 2750347  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_1/TILE_1   7.7  92.0    0.1    0.1    0.0      0.0 2750347  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_1/TILE_2   7.7  92.1    0.1    0.0    0.0      0.0 2750347  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_1/TILE_3   7.7  92.1    0.1    0.0    0.0      0.0 2750347  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_1/TILE_4   7.3  91.9    0.5    0.3    0.0      0.0 2750332  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_1/TILE_5   7.3  91.9    0.5    0.3    0.0      0.0 2750332  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_1/TILE_6   7.3  91.9    0.5    0.3    0.0      0.0 2750332  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b
/XRDU_3/RDU_1/TILE_7   7.3  92.0    0.5    0.1    0.0      0.0 2750332  vsastry /opt/sambaflow/apps/nlp/transformers_on_rdu/venv/b

The Slurm log associated with the JOBID (10191 in the above example) is located in the home directory. You can use the tail command to check the progress of the training.

vsastry@sn30-r1-h1:~$ tail -f ~/slurm-10191.out
Using /data/ANL/results/sn30-r1-h1/vsastry/041823.03/Gpt1.5B.out for output
vsastry@sn30-r1-h1:~$ tail -f /data/ANL/results/sn30-r1-h1/vsastry/041823.03/Gpt1.5B.out

Once the run is completed, check the log file for the performance results.

{'e2e_train_time': 2179.2292835712433, 'training_sequences_per_second': 192467.31088004305, 'final_loss': 4.781678199768066}
247/3247 [01:03<00:00, 50.76it/s]